رکسل

رکسل

Rexel
رکسل

رکسل

Rexel

دانلود پاورپوینت خصوصیات فیزیکوشیمیائی از اصلاح شیمیایی نشاسته ذرت به رفتار رئولوژیکال


دانلود پاورپوینت خصوصیات فیزیکوشیمیائی از اصلاح شیمیایی نشاسته ذرت به رفتار رئولوژیکال، انحطاط و فیلم تشکیل ظرفیت مرتبط

رویکرد جدایی ناپذیر از اثر اصلاح شیمیایی بر خواص فیزیکوشیمیایی و تابعی از نشاسته ذرت با استفاده از روشهای مختلف و مکمل انجام شد Acetylated acetylated cross linked، hydroxypropylated crosslinked، اسید و نشاسته اصلاح شده ذرت قرار گرفت جایگزینی و اصلاح دوگانه کاهش غلظت قابل توجه آمیلوز انجام می شود

دانلود دانلود پاورپوینت خصوصیات فیزیکوشیمیائی از اصلاح شیمیایی نشاسته ذرت به رفتار رئولوژیکال، انحطاط و فیلم تشکیل ظرفیت مرتبط

خصوصیات فیزیکوشیمیائی
اصلاح شیمیایی نشاسته ذرت
رفتار رئولوژیکال
انحطاط 
فیلم تشکیل ظرفیت مرتبط
دسته بندی کشاورزی و زراعت
فرمت فایل pptx
حجم فایل 136 کیلو بایت
تعداد صفحات فایل 63

چکیده :

رویکرد جدایی ناپذیر از اثر اصلاح شیمیایی بر خواص فیزیکوشیمیایی و تابعی از نشاسته ذرت با استفاده از روشهای مختلف و مکمل انجام شد. Acetylated. acetylated cross linked، hydroxypropylated crosslinked، اسید و نشاسته اصلاح شده ذرت قرار گرفت. جایگزینی و اصلاح دوگانه کاهش غلظت قابل توجه آمیلوز انجام می شود. اصلاح شیمیایی کاهش گرانول مرتبط با درجه تبلور می باشد. افزایش قابل توجهی در قدرت تورم در جایگزینی دوگانه و نشاسته اصلاح شده در 90 درجه سانتی گراد مشاهده شده، علاوه بر این درمان ها کاهش دمای ژلاتینه شدن و آنتالپی است.

اسید عصاره ها و سس نشاسته اصلاح شده نشان داد در حالی که جایگزین رفتار نیوتنی و دوگانه اصلاح آنهایی که پاسخ viscoelastic به نمایش گذاشته شده است. خواص دینامیکی رئولوژیکال، عصاره ها و سس از نشاسته اصلاح شده زمان پست پاسخ ها ژلاتینه شدن نمی شدند در حالی که تحت تاثیر مواد نشاسته ای بومی عصاره ها و سس توسعه ساختار سفت و سخت تر در طول ذخیره سازی قرار می گیرند. واگشتگی از عصاره ها و سس جایگزین نشاسته پس از 12 روز در 4 درجه سانتی گراد، کاهش یافت و از درجه syneresis افزایش سختی به طور معنی داری کمتر از عصاره ها و سس بومی است. این که تنها جایگزین نشاسته و بومی به نمایش فیلم تشکیل ظرفیت نشان داده شد.

1. مقدمه

امروزه، توسعه محصولات غذایی و تقاضا ثابت است. بنابراین توابع جدید خواص نشاسته مورد نیاز برای پردازش مواد غذایی مناسب است. این خواص نشاسته عمدتا مربوط به گرانول ظرفیت تورم، شرایط ژلاتینه شدن و خواص رئولوژیکال می باشد. تمایل انحطاط از عصاره ها و سس و فیلم تشکیل ظرفیت. نشاسته بومی فراهم چسبناک. منسجم و چسبنده عصاره ها و سس زمانی که آنها گرم شده و هنگامی که این ژل ها رب ها و سس سرد کردن (Adebowale و همکاران، 2005). به طور کلی، نشاسته بومی ارائه شده از مقاومت کم تنش برشی و تجزیه حرارتی برخوردار است. علاوه بر بالا انحطاط و syneresis (ویسلر و همکاران، 1984). نشاسته ذرت های بومی می تواند برای به دست آوردن رب ها و سس با ویژگی های خاص است که می تواند مواد غذایی مورد نیاز شدید پردازش مانند مقاومت در برابر حرارت اصلاح شود.

دانلود دانلود پاورپوینت خصوصیات فیزیکوشیمیائی از اصلاح شیمیایی نشاسته ذرت به رفتار رئولوژیکال، انحطاط و فیلم تشکیل ظرفیت مرتبط

انواع فرآیندهای فیزیکی رسوب گذاری فرآیندهای فیزیکی


انواع فرآیندهای فیزیکی رسوب گذاری

فرآیندهای فیزیکی یکی از چهار فرآیند می‌باشد که شامل حمل و نقل و رسوبگذاری دانه‌ها است دانه‌ها پس از تخریب توسط آب و باد یا یخ حمل شده و در انتها در حوضه رسوبی ته نشین می‌شوند برای بررسی بیشتر خواص فیزیکی باید شرایط دینامیکی حرکت ذرات جامد در هوا یا آب را مورد بررسی قرار داد زیرا بدین طریق می‌توان نتیجه حاصل را با فرآیندهای رسوبی که باعث تشکیل آنها

دانلود انواع فرآیندهای فیزیکی رسوب گذاری

فرآیندهای رسوبگذاری در محیط آبی
فرآیندهای حمل و نقل و رسوبگذاری
جورشدگی هیدرولیکی
انواع مختلف حرکت دانه‌ها
مکانیزم حرکت اولیه دانه تخریب
فرآیندهای هیدرودینامیکی رودخانه ها
دانلود انواع فرآیندهای فیزیکی رسوبگذاری
دسته بندی زمین شناسی
فرمت فایل doc
حجم فایل 211 کیلو بایت
تعداد صفحات فایل 13

انواع فرآیندهای فیزیکی رسوبگذاری

فرآیندهای فیزیکی یکی از چهار فرآیند می‌باشد که شامل حمل و نقل و رسوبگذاری دانه‌ها است. دانه‌ها پس از تخریب توسط آب و باد یا یخ حمل شده و در انتها در حوضه رسوبی ته نشین می‌شوند. برای بررسی بیشتر خواص فیزیکی باید شرایط دینامیکی حرکت ذرات جامد در هوا یا آب را مورد بررسی قرار داد. زیرا بدین طریق می‌توان نتیجه حاصل را با فرآیندهای رسوبی که باعث تشکیل آنها گردیده‌اند، مرتبط کرد.

فرآیندهای هیدرودینامیکی رودخانه‌ها

دانه‌ها پس از تخریب در منشا توط عواملی از قبیل آب و هوا و یخ به ریف حوضه رسوبی حرکت می‌کنند. دانه‌های جامد ممکن است به صورت معلق ، جهشی ، غلتیدن و سرخوردن بر روی دانه‌های دیگر حرکت کنند. نحوه حرکت به اندازه سرعت و شدت جریان بستگی دارد. بسته به سرعت آب در رودخانه‌ها دو نوع جریان خطی و آشفته قابل مشاهده است. در جریانهای خطی ذرات جامد از مایع به صورت خطی در یک لایه از مایع حرکت می‌کنند به نحوی که لایه پایین و بالایی باهم موازی است.

در جریانهای آشفته که در اثر افزایش سرعت آب بوجود می‌آید. ذرات جامد در مایع به صورت مارپیچی حرکت می‌کنند. در این نوع جریانها ذرات به طرف جلو ، بالا و پایین حرکت می‌کنند ولی در جریانهای خطی ذرات فقط به طرف جلو حرکت می‌کنند. تغییر جریان از خطی به آشفته به طول لوله یا کانال ، سرعت انتخاب شده ، شکل هندسی کانل و خوصیات دیگر حداکثر است ولی در جریانهای آشفته آب دائما در حرکت است از کناره رودخانه به مرکز می‌رود و دائما تغییر مکان می‌دهد. بطور کلی در حرکت دانه ریز نیروی ویسکوزیته اهمیت دارد ولی در حرکت ذرات درانه درشت نیروی جاذبه به اهمیت بیشتری دارد.

مکانیزم حرکت اولیه دانه (تخریب(

بطور کلی دانه‌ها در کف بسته به حالت سکون قرار دارند. هنگامی که جریان مواد سیال از روی دانه‌ها عبور می‌کند، دانه‌ها تحت تاثیر چها نیروی مختلف قرار می‌گیرند که این نیروها عبارتند از نیرو وزنی دانه بستگی دارد و از حرکت آن جلوگیری می‌کند، نیروی اصطکاک بین دانه و دانه‌های اطراف که این نیرو نیز از حرکت دانه‌ها جلوگیری می‌کند. نیروی کشش مایع که تمایل دارد دانه را دانه را بر روی دانه‌های دیگر حرکت داده و به صورت غلتیدن جابجا کند. میزان این نیرو به سرعت جریان بستگی دارد و بالاخره نیروی هیدرولیکی بررسی نشان می‌دهد که دانه به صورت عمودی از زمین بلند کند و در جهت جریان قرار دهد.

بررسیها نشان می‌دهد که دانه به صورت عمودی از زمین بلند می‌شود و سپس در هنگام پایین و برخورد به دانه‌های دیگر به حرکت خود ادامه می‌دهد که این عمل را جهش می‌گویند. فرآیند جهش در هوا بهتر از آب صورت می‌گیرد، زیرا نیروی بلند کردن دانه فقط هنگامی که دانه در روی سطح زمین قرار دارد موثر است و مسئول حرکت اولیه آن می‌باشد ولی زمانی که دانه از جای خود بلند شد نیروی کششی هوا یا آب مسول حرکت آن است.

برای حرکت دانه‌ها سرعت جریان باید به حد بحرانی برسد تا اینکه بتواند دانه‌ها را از جای خود حرکت دهد و با خود حمل سرعت بحرانی برای تخریب و حرکت دانه‌ها با افزایش قطر آنها زیاد می‌گردد. با استثنای ذرات رس که برای تخریب آنها سرعت زیادتری لازم است. زیرا ذرات دانه ریز دارای خاصیت چسبندگی بوده و به یکدیگر متصل می‌شوند همچنین ذرات دانه ریز رسی در سطح دارای ناهمواریهای زیادی بوده و زاویه‌دارتر می‌باشند لذا در مقابل جریان آب مقاومت بیشتری از خود نشان می‌دهند.

انواع مختلف حرکت دانه‌ها

هنگامی که میزان انرژی موجود در کف بسته از حد بحرانی گذشت، دانه‌ها در سطح لایه شروع به حرکت می‌کنند. نوع حرکت ذرات به اندازه آنها و سرعت جریان بستگی دارد. دانه‌ها در آب و هوا به چهار صورت غلتیدن، سر خوردن ، جهشی و معلق حرکت می‌کنند.

در شرایط ثابت با سرعت مشخص دانه‌های درشت (گراول) به صورت غلتیدن و سرخوردن در سطح لایه حرکت می‌کنند. همچنین در این شرایط دانه‌های سبک (ماسه‌ها) از زمین بلند شده و در اثر برخورد به دانه‌های دیگر به صورت جهشی و دانه‌های بسیار ریز (سیلت و رس) به صورت معلق حرکت می‌کنند.

در این شرایط به گراول هل و ماسه‌ها که در بستر حرکت می‌کنند بار بستر (Bed load) و ذرات دانه ریز سیلت و رس را بار معلق (Sus pension load) می‌گویند. به علت اختلاف چگالی آب و هوا عمل جهش در هوا بهتر صورت می‌گیرد. دانه‌ها در هنگام برخورد به رسوبات سطح لایه (عمل جهش در هوا) مقداری از انرژی جنبشی خود را به دانه‌های در حال استراحت در سطح لایه منتقل می‌کنند و باعث حرکت آنها به صورت خزیدن در سطح لایه می‌شوند. این نوع حرکت را به نام خزش سطحی (Surface Greep) می‌نامند.

جورشدگی هیدرولیکی

روشهای مختلف حرکت دانه‌ها باعث می‌شود که دانه‌ها در اندازه‌های متفاوت به روشهای مختلف حرکت کنند. این اختلاف در نوع حرکت باعث می‌شود که یک جدایی در اندازه و شکل دانه‌ها بوجود آید که به نام جورشدگی هیدرولیکی (Hydroulic Sorting) نامیده می‌شود. این جورشدگی در رسوبات بادی که اختلاف چگالی بین دانه‌های ماسه و هوا زیاد است بخوبی دیده می‌شود. در نتیجه این اختلاف باد قادر به حمل دانه‌های درشت ماسه نمی‌باشد.

بطور کلی تمام ذراتی که با یکدیگر توسط فرآیندهای آبی یا بادی رسوب می‌کنند ذرات با تساوی رسوبگذاری نامیده می‌شوند. تساوی قطری در ذراتی را که به صورت معلق حرکت می‌کنند بهتر از دانه‌هایی است که به صورت بار بستر حرکت خوهند کرد. زیرا ذراتی وجود دارند که از نظر شکل و اندازه یکسان نیستند ولی به علت اختلاف چگالی با یکدیگر رسوب کرده‌اند.

فرآیندهای حمل و نقل و رسوبگذاری

فرآیندهای حمل و نقل و رسوبگذاری دانه‌های رسوبی توسط جریانهای کششی ، جریانهای دانسیته‌ای یا چگالی ، معلق و یا یخچالها انجام می‌شود و موجب تشکیل رسوبات مختلفی می‌گردد که هر یک دارای اختصاصات بافتی مخصوص به خود می‌باشند.

جریانهای دانسیته‌ای که در اثر احتلاف چگالی بین مواد سیال ایجاد می‌شود، پس از رسوبگذاری مواد رسوبی مخلوطی از ذرات ماسه ، سیلت و رس بر جای گذاشته می‌شود که معمولا فاقد طبقه بندی مورب هستند این نوع رسوبات طبقه بندی تدریجی از خود نشان می‌دهند. در حالت تعلیق ، ذرات دانه ریز به صورت معلق حمل شده و پس از کاهش شدت جریان در محیط آرامی رسوب می‌کنند.

اگر دانه‌های رسوبی توسط یخچالها یا جریانهای گلی حمل می‌شوند، پس از رسوبگذاری تشکیل رسوبات ناجورشدگی خیلی بد را می‌دهند. این نوع رسوبات می‌توانند در آب یا خشکی تشکیل شوند. همانطور که توضیح داده شد فرآیندهای حمل و نقل و رسوبگذاری در محیطهای مختلفی همچون محیطهای خشکی ، محیطهای آبی ، حمل ونقل توسط نیروی جاذبه و همچنین حمل و نقل توسط یخچالها انجام می‌شود.

فرآیندهای رسوبگذاری در محیط آبی

دانلود انواع فرآیندهای فیزیکی رسوب گذاری

پیشینه و مبانی نظری نقش عوامل اکولوژیکی در توسعه فیزیکی شهرها


پیشینه و مبانی نظری نقش عوامل اکولوژیکی در توسعه فیزیکی شهرها

مبانی نظری و پیشینه نقش عوامل اکولوژیکی در توسعه فیزیکی شهرها

دانلود پیشینه و مبانی نظری نقش عوامل اکولوژیکی در توسعه فیزیکی شهرها

مبانی نظری و پیشینه نقش عوامل اکولوژیکی در توسعه فیزیکی شهرها
دسته بندی جغرافیا
فرمت فایل docx
حجم فایل 68 کیلو بایت
تعداد صفحات فایل 18

بصورت فایل ورد

همراه با منابع

2-1)مقدمه...........................................................................................................................................................25

2-2). مباحث مربوط به توسعه شهری. ........................................................................................................25

2-2-1). شهر......................................................................................................................................................25

 2-2-2). برنامه ریزی...........................................................................................................................................26

2-2-3). برنامه­ ریزی شهری.............................................................................................................................27

2-2-4). کاربری اراضی.....................................................................................................................................27

2-2-5). رشد و توسعه شهری.........................................................................................................................28

2-2-6). مفهوم توسعه فیزیکی.......................................................................................................................28

2-2-7). فضای شهری......................................................................................................................................29

 2-2-8). بافت....................................................................................................................................................29

2-2-9). نظریات مورفولوژیکی و توسعه فیزیکی شهر................................................................................30

2-2-10). توسعه فیزیکی شهر از دیدگاه اکولوژیک...................................................................................31

2-2-11). نظریه ­های هسته ­های متعدد شهر یا شهر چند هسته ای........................................................31

2-2-12). نظریه ساخت دوایر متحدالمرکز.................................................................................................32

2-2-13). نظریه ساخت ستاره ­ای شکل........................................................................................................32

2-2-14). نظریه محوری یا توسعه قطاعی شهر..........................................................................................33

2-2-15). نظریه شهر خطی............................................................................................................................33

2-3). متغیرهای موثر در مکان­یابی توسعه­ ی فیزیکی شهرها.................................................................33

2-3-1). مقدمه.................................................................................................................................................33

2-3-2). ژئومورفولوژی....................................................................................................................................34

2-34). جنس خاک..........................................................................................................................................34

2-3-5). قابلیت خاک. ..................................................................................................................................35

2-3-6). شیب...................................................................................................................................................35

2-3-7). باد.......................................................................................................................................................35

2-3-8). آب­های زیرزمینی.............................................................................................................................36

2-3-9). ارتفاع...................................................................................................................................................36

2-3-10). رعایت حریم گسل.........................................................................................................................36

2-3-11). جهت­ های جغرافیایی......................................................................................................................36

2-3-12). حریم رودخانه ها.............................................................................................................................37

دانلود پیشینه و مبانی نظری نقش عوامل اکولوژیکی در توسعه فیزیکی شهرها

جزوه تایپ شده، رنگی و مصور "فیزیک 3


جزوه تایپ شده، رنگی و مصور "فیزیک 3 رشته تجربی"

کتاب فیزیک 3 رشته تجربی از 4 فصل تشکیل شده است در این جزوه 149 صفحه ای تدریس مصور 4 فصل کتاب به همراه نمونه سوالات سال های گذشته و مساله های متعدد و متنوع و نکات ریز کنکوری در 42 جلسه قرار داده شده است این جزوه برای کسانی مناسب است که قصد دارند درس فیزیک 3 را امتحان بدهند یا در کنکور سراسری شرکت نمایند

دانلود جزوه تایپ شده، رنگی و مصور

فیزیک 3 رشته تجربی
جزوه کامل فیزیک 3 رشته تجربی
فیزیک 3 رشته تجربی در کنکور
نکات فیزیک 3 رشته تجربی برای کنکور
جزوه کنکور فیزیک 3 رشته تجربی 
تدریس کامل تمام مطالب فیزیک 3 رشته تجربی
فیزیک 3 دبیرستان
فیزیک 3
دسته بندی فیزیک
فرمت فایل pdf
حجم فایل 6027 کیلو بایت
تعداد صفحات فایل 149

کتاب فیزیک 3 رشته تجربی از 4 فصل تشکیل شده است. در این جزوه 149 صفحه ای تدریس مصور 4 فصل کتاب به همراه نمونه سوالات سال های گذشته و مساله های متعدد و متنوع و نکات ریز کنکوری در 42 جلسه قرار داده شده است. این جزوه برای کسانی مناسب است که قصد دارند درس فیزیک 3 را امتحان بدهند یا در کنکور سراسری شرکت نمایند.

ویژگی های بسته آموزشی حاضر:
- تدریس جامع کلیه ی مطالب کتاب درسی
- حل و تحلیل مثال های مهم کتاب
- حل مسائل مهم امتحانی خارج از کتاب
- ارائه نکات ریز و ظریف کنکوری
- چهار جلسه آموزش اضافی در زمینه بردارها ( جهت آمادگی ریاضی دانش آموز برای مطالب بعدی )
- استفاده از جدول ، نمودار و تصاویر آموزشی سه بعدی و رنگی جهت بالا رفتن کیفیت آموزش

سرفصل های آموزشی:

فصل اول: الکتریسیته ی ساکن

آشنایی با مفهوم بردار
جمع و تفریق برداری
تجزیه ی بردارها
ضرب بردارها
آشنایی با الکتریسیته
قانون کولن
میدان الکتریکی
خطوط میدان الکتریکی – بار الکتریکی در میدان
انرژی پتانسیل الکتریکی
پتانسیل الکتریکی
توزیع و القای بار در رساناها
آشنایی با خازن
خازن با دی الکتریک
انرژی خازن
بهم بستن موازی خازن ها
بهم بستن متوالی و ترکیبی خازن ها

فصل دوم: جریان الکتریکی و جربان های مدار مستقیم

جریان الکتریکی
مقاومت رساناهای اهمی
انواع مقاومت
نیرو محرکه ی الکتریکی و مدارها
مدار تک حلقه ای
توان در مدارهای الکتریکی
بهم بستن متوالی مقاومت ها
مدارهای چند حلقه ای
بستن مقاومت ها به صورت موازی
مقاومت معادل در حل مسائل


فصل سوم: میدان مغناطیسی و نیروهای معناطیسی

آشنایی با مغناطیس و میدان مغناطیسی
میدان مغناطیسی – میدان مغناطیسی زمین
سیم حامل جریان در میدان مغناطیسی
ذره ی باردار متحرک در میدان مغناطیسی
میدان مغناطیسی سیم مستقیم حامل جریان
میدان مغناطیسی پیچه ی حامل جریان
میدان مغناطیسی درون سیملوله
نیروی بین سیم های موازی حامل جریان
خواص مغناطیسی مواد


فصل چهارم: القای الکتزومغناطیسی
القای الکترومغناطیسی
شار مغناطیسی
قانون القای الکترومغناطیسی فارادی
قانون لنز
القاگرها و اثر خودالقایی
القای متقابل – انرژی ذخیره شده در القاگر
جریان متناوب
مبدل ها ( ترانسفورماتورها )

دانلود جزوه تایپ شده، رنگی و مصور

فیزیک - سیر تحول ستارگان در حوزه علم فیزیک جهان


فیزیک - سیر تحول ستارگان در حوزه علم فیزیک

جهان چگونه آغاز شد؟ چنین رویدادی را چگونه می توان تصور کرد؟ امروز بیشتر دانشمندان بر این عقیده اند که قراین خوبی وجود دارد که نشان می دهد گذشتة جهان بسیار متفاوت بوده است و همة مادة جهان از انفجاری عظیم نشأت کرده و جهان از آن پس پیوسته انبساط یافته است

دانلود فیزیک - سیر تحول ستارگان در حوزه علم فیزیک

سیر تحول ستارگان در حوزه علم فیزیک
علم فیزیک
سیر تحول ستارگان
دسته بندی فیزیک
فرمت فایل doc
حجم فایل 1441 کیلو بایت
تعداد صفحات فایل 225

فصل اول

شکل گیری ستارگان

 پیش از انفجار بزرگ

جهان چگونه آغاز شد؟ چنین رویدادی را چگونه می توان تصور کرد؟ امروز بیشتر دانشمندان بر این عقیده اند که قراین خوبی وجود دارد که نشان می دهد گذشتة جهان بسیار متفاوت بوده است و همة مادة جهان از انفجاری عظیم نشأت کرده و جهان از آن پس پیوسته انبساط یافته است.

در خیال ، زمان را تا انفجار بزرگ به عقب می بریم و چون به اندازة‌ کافی به عقب باز گردیم ـ یعنی به زمانی پیش از پیدایش کهکشانها که جهان بسی کوچکتر از حال بود ـ آنچه می بینیم گاز سوزانی از اتمها و فوقونها یعنی ذرات نور است . چون باز هم به عقب رویم، جهان همچنان انقباض می یابد، ذرات گاز به یکدیگر نزدیکتر و در نتیجه برانگیخته تر می شوند و دمایشان افزایش پیدا می کند. هر چه بیشتر به عقب رویم، گاز داغتر و سوزانتر می شود[1]. با افزایش دمای گاز، هر چیز به ذرات تشکیل دهنده اش « ذوب » می شود. اتمها به الکترونها و هسته ها «ذوب[2]» می شوند ؛ هسته ها به پروتونها و نوترونهای سازندة خود تجزیه می شوند و چون دما باز هم افزایش یابد پروتونها و نوترونها به کوارکها و گلوئونهایی تجزیه می شوند که آنها را تشکیل داده اند . جهان در بیشترین دمای ممکن متشکل است از آتشگوی آغازینی از همة ذرات بنیادی. امروزه مطالعة جهان آغازین عبارتست از ساختن مدلهایی ریاضی برای این آتشگوی بر اساس نظریه های جدید ذرات کوانتومی ( ذرات بنیادی ). وقتی که در سال 1964 آرنو پنزیاس و رابرت ویلسن در آزمایشگاههای بل در نیوجرزی، اشعة میکروموجی باقیمانده از انفجار بزرگ را کشف کردند ، این نظریه سخت تقویت شد. به دنبال این تأیید تجربی، فیزیکدانان و اختر فیزیکدانان نظری با اطمینان به انجام محاسبات پیچیدة خواص انفجار آغازین پرداختند. آنان با استفاده از قوانین شناخته شدة فیزیک هسته ای محاسبه کردند که چگونه ممکن است عنصرهای شیمیایی ـ هسته های اتمی ـ از آتشگوی آغازینی متشکل از پروتونها و نوترونها بوجود آمده باشد؛ و از روی این محاسبات، فراوانی نسبی عناصر سبک نظیر ئیدروژن، هلیوم و دوتریوم را پیش بینی کردند . این پیش بینی ها دقیقاً با فراوانیهائی که امروزه مشاهده می شود, وفق می دهد . فکر انفجار بزرگ[3] از برکت این پیش بینیهای موفقیت بار اعتبار زیادی کسب کرد بطوری که در اوایل دهة 1970 بر نظریه های دیگر مربوط به پیدایش جهان چیره شد. چیزی که به «مدل متعارف انفجار بزرگ سوزان» معروف شده است نشان دهندة‌ توافق نظر عمومی جدیدی است دربارة وضع جهان آغازین. فرضیة اصلی « مدل متعارف » آن است که جهان سوزان اولیه به سرعت و بطرزی یکنواخت، در حالیکه دما بطور یکنواخت کاهش پیدا می کرد، انبساط یافت.

هر نظریة موفق معمولاً دیدگاهی تازه را می گشاید و مسائل جدیدی را بهمراه می آورد؛ نظریة انفجار بزرگ نیز از این قاعده مستثنی نیست. دو مسألة چالش طلبی که این نظریه مطرح می کند عبارتند از «مسأله علیت» و«مسأله تخت بودن فضا».

مسأله علیت این است که جهان به اندازه ای بزرگ است که نواحی بسیار دور از هم آن نمی توانند با یکدیگر مرتبط باشند، یعنی بطور فیزیکی با هم به کنش متقابل بپردازند، حتی اگر چنین ارتباطی با سرعت نور ـ بیشترین سرعت ممکن ـ انجام گیرد. اگر جهان 10 تا 15 بیلیون سال پیش (بیشتر تخمینها در این حدودند) بوجود آمده باشد، نور یا هر نوع وسیلة ارتباط دیگر در این مدت نمی تواند مسافت بین دو کهکشان را که فرضاً بیست میلیون سال نوری ـ رقمی بزرگتر از سن جهان ـ از هم فاصله دارند بپیماید. و اگر قسمتهای مختلف جهان مرئی کنونی نتوانند با هم کنش متقابل داشته باشند، پس چرا این قدر به هم شبیهند؟ منظور از شباهت این است: در هر امتداد که بنگریم می بینیم که دمای زمینة میکروموجی یکی است و به هر جا که نگاه کنیم کهکشانهایی را می بینیم که با وجود تفاوتهای اندک، اساساً مانند یکدیگرند.

دومین مشکل مدل متعارف انفجار بزرگ، یعنی مسأله تخت بودن فضا، این است که چرا در زمان حاضر فضای جهان در مقیاسهای بزرگ تا این حد تخت و مسطح است. بنا بر نظریة نسبیت عمومی[4] اینشتاین، فضا می تواند خم شود، و این نکته را آزمایش در همسایگی خورشید تأیید کرده است. اما در پهنه های وسیعتر، مانند فضای میان کهکشانها، انحنای فضایی بقدری کم است که آن را نمی توان ردیابی کرد. حتی در مقیاس مجموعه های کهکشانی نیز فضا را می توان به تقریب خوب یک فضای تخت اقلیدسی عادی دانست. ولی بنابر افکار متداول در فیزیک نظری و کیهانشناسی، تخت بودن فضا چیزی است فوق العاده نامحتمل و در نتیجه فهم علت آن دشوار است. بسیار محتملتر آن است که جهان چنان پیچ و تاب یابد و فضایی چنان خمیده را بوجود آورد که به آنچه دیده می شود شباهتی نداشته باشد .

اینها مسائلی نیست که مایة‌  نگرانی بیشتر مردم شود، اما اسباب ناراحتی اخترفیزیکدان و کیهانشناس را فراهم می آورد . آلن گوث، فیزیکدانی نظری ، که اکنون در ام . آی . تی است ، به سال 1981 در نظریه ای که آن را «جهان متورم» نامید ، پاسخی برای این سؤالها پیشنهاد کرد. نظریة گوث را به حق می توان اولین اندیشة نو کیهانشناسی در چند دهة اخیر دانست .

بنا بر نظریة گوث، تکامل جهان آغازین ـکه گهگاه جهان رویانی نیز نامیده می شودـ انبساطی یکنواخت در گازی سوزان و متشکل از ذرات، نبود. بلکه حالت جهان، در حالیکه هنوز آتشگویی بود، دستخوش تغییر و تحولی بنیادی شد، تحولی که یک تغییر حالت [5] نامیده می شود. بعد از این تغییر حالت بود که جهان، در حالت متعارفی انفجار بزرگ سوزان، با انبساطی نسبتاً یکنواخت قرار گرفت. اما پیش از این تغییر حالت، جهان در حالتی بود کاملاً متفاوت موسوم به «حالت متورم » . جهان در این دوران تورم ، دچار انبساطی عظیم شد .

اگر وجود حالت متورم را در زمانی که دمای جهان یک میلیون بیلیون درجة کلوین بود بپذیریم، می توانیم مسألة علیت را به صورت زیر حل کنیم . در حالت متورم همة نواحی جهان مرئی کنونی ، حتی کهکشانهایی که اکنون 20 میلیون سال نوری از هم فاصله دارند ، می توانستند از طریق علایم نوری با هم مرتبط باشند . البته جهان در آن زما مانند امروز نبود . کهکشانها وجود نداشتند ، ولی افت و خیزهای کوچکی که در این گاز ذرات وجود داشت بر یکدیگر اثر می کردند و همین افت و خیزها بودند که رشد کردند و کهکشانها را بوجود آوردند . پس از تغییر حالت مفروض گوث پیوند این افت و خیزها با یکدیگر از هم گسست و دیگر ارتباط آنها با هم از دوردست به ما می رسد ، آن افت و خیزهای ـ که اکنون کهکشان شده اند ـ‌ با ما تماس حاصل می کنند .

وجود یک حالت متورم در گذشته این نکته را نیز توضیح می دهد که چرا در حال حاضر هندسة بزرگ مقیاس جهان اینقدر تخت است . نظریة متعارف انفجار بزرگ ، شرایطی را در جهان آغازین فرض می کند که تختی کنونی جهان عملاً ناممکن بنظر می رسد . اما فرض تورم گوث، پیوند میان روال کنونی جهان و شرایط اولیه ای را که برای جهان در نظر می گیریم ، از میان برمی دارد . مطابق نظر گوث هر قدر هم که در یک مدل ، جهان آغازین ـ ففط یک میلیونیم ثانیة پس از آغاز ـ « به دقت تنظیم شود » . حاصل نهایی جهانی است از لحاظ فضایی تخت ، مشروط بر آنکه در ابتدا تورم بزرگ اقتصادی توسل جست ، تورمی نه ده برابر ، بلکه بیلیونها برابر . در این صورت دیگر فرقی نمی کند که مردم در آغاز تورم غنی بوده اند یا فقیر . پول همه بی ارزش می شود و هر کس بی چون و چرا ورشکسته است .

گرچه فرض جهان متورم گوث مسائل علیت و تخت بودن فضا را حل کرد ، ولی خود مانند نظریة انفجار بزرگ[6] گرفتار مسأله ایست ( که گوث هم از آن اطلاع دارد ) . این مسأله به جزئیات تغییر حالت مربوط می شود . یعنی به آن دگرگونی شدیدی که برای حالت آتشگوی فرض می شود ، یا به عبارت دیگر به چگونگی گذر جهان از حالت متورم به حالت نامتعارف انفجار بزرگ . آنچه واقع شد این است که تغییر حالت از طریق تکوین و تشکیل حبابهاصورت گرفت .

کتری پر از آبی را روی اجاقی داغ تصور کنید . با گرم شدن آب ، حبابهای بخار در کتری تشکیل می شود و پس از چندی آب شروع به جوشیدن می کند . گذر از مایع به گاز تغییر حالتی نظیر تغییر حالت گوث است . در داخل حباب یک حالت وجود دارد ( حالت بخار در مورد آب و « حالت انفجار بزرگ » در مورد جهان ) و در بیرون حباب حالتی دیگر ( حالت مایع در مورد آب و « حالت متورم » در فرضیه گوث ) . با تشکیل حبابهای حالت انفجار بزرگ در حالت متورم ، این حبابها با یکدیگر برخورد می کنند و دیری نمی گذرد که حالت درون حباب ـ حالت انفجار بزرگ ـ سرتاسر فضا را فرا می گیرد ، درست مانند موقعی که بگذاریم آب بجوشد و سرانجام تماماً تبدیل به بخار شود . اما این برداشت از تغییر حالت موجب درد سر گوث شد . اگر جهان کنونی حاصل آن همه برخوردهای قهرآمیز حبابهای اولیه بشمار رود، باید بسی ناهمگنتر از آنچه مشاهده می شود باشد . بنابراین مدل گوث به ظاهر ناموفق است .

آ. لینده فیزیکدان شوروی و دو فیزیکدان آمریکایی به نامهای آندر آس آلبرخت و پاول اشتاینهارت از دانشگاه پنسیلوانیا به نجات این مدل کمر بستند . آنان نشان دادند که اگر حالت متورم بقدر کافی دوام آورد ، برخوردهای مزاحم و چندگانة حبابها صورت نخواهد پذیرفت و تنها یک حباب بزرگ تنها از حالت انفجار بزرگ در داخل حالت متورم بجا خواهد ماند . اگر حرف این نظریه دانان درست باشد، جهان ما آن یک حباب بزرگ است و ما اکنون در داخل آن زندگی می کنیم .

با آنکه نظریه گوث مسائل علیت و تخت بودن فضا را حل می کند ، ولی سؤال بنیادی تر همچنان باقی است . پیش از حالت تورم چه بود ؟ این سؤال ما را به پرسشی باز می گرداند که در آغاز کردیم : این روند چگونه آغاز شد ؟ و این سؤالی است که ذهن افراد عادی را هم می آزارد . دانشمندان به تازگی در آن چنگ انداخته اند و سناریویی که ارائه شده این است : جهان ، یعنی آتشگوی انفجار بزرگ ، از هیچ ـ یعنی از یک خلاء ـ نشأت کرد . چگونه چنین چیزی ممکن است؟

برای پاسخ دادن به این سؤال نخست باید دید که فیزیکدانان از هیچ ـ یعنی از خلاء ـ چه برداشتی دارند . مطابق نظریه های جدید ، خلاء همان هیچ نیست بلکه آکنده از ذراتی کوانتومی است که میان بود و نبود نوسان می کنند . این ذرات خرد ، در کسری از ثانیه بوجود می آیند و بی  درنگ یکدیگر را نابود می کنند و چیزی بجا نمی گذارند . خلاء به این معنی مانند سطح اقیانوس است . چون از نزدیک نظر شود پر از موج است ، ولی از فاصله ای دورتر ، مثلاً از فراز یک هواپیمای جت ، صاف و بی حرکت می نماید . همینطور هر خلاء چون از دور دیده شود یکدست و تهی به چشم می آید ، اما چون از نزدیک و با وسایل خاص بازرسی شود آکنده از ذرات ریز کوانتومی به نظر خواهد رسید .

یک راه ممکن برای پیدایش جهان از خلاء این است که یکی از امواج اقیانوس خلاء ، بجای آنکه به هیچی و نابودی فرو افتد ، پیوسته رشد کند . برخی از فیزیکدانان نظری بر این باورند که این امر در صورتی امکانپذیر خواهد بود که گرانش به حساب آید . گرانش به صورت تقویت کنندة آن موجی عمل می کند که در آغاز بسیار خرد است ، و آن را تا حد آتشگوی تمام عیاری رشد می دهد که می تواند به جهانی در حالت متورم تبدیل شود.

تبیین محتمل دیگری از آفرینش جهان از یک خلاء این است که « خلاء » اولیة‌ جهان ناپایدار بوده است . مطابق این حدس ، خلاء اولیه ، خلائی واقعی ـ یعنی پائینترین حالت انرژی ـ نبود بلکه      « خلائی دروغین » ‌بود . قوانین نظریة کوانتومی ایجاب می کند که چنین خلاء دروغینی به خلائی راستین تلاشی یابد ـ تلاشی قهرآمیزی که با ایجاد ذره های بسیار همراه است . بدین طریق تلاشی[7] یک خلاء دروغین منشأ جهان را ـ منشأ آتشگوی آغازین را که هر چیز دیگر از آن پدید آمد ـ توضیح می دهد .

چنین اندیشه هایی دربارة منشأ جهان ، بی اندازه نظر پردازانه اند و فعلاً هیچ راهی نیست که صحت و سقم آنها را باز نماید . احتمالاً باید آنها را حدس و گمان خواند . ولی حدسهایی معقول که چارچوب فیزیک کنونی ما آنها را مجاز می شمارد ، و فیزیکدانان و اختر فیزیکدانان نظری بسیاری پشتیبانشان هستند . از سوی دیگر بعضی از دانشمندان بر این نظرند که ما هرگز به پاسخ این قبیل سؤالهای نهایی دست نخواهیم یافت و چنین استدلال می کنند که چون آغاز عالم ، رویدادی مشاهده ناپذیر است پس در حوزة علم تجربی نمی گنجند . برخی دیگر معتقدند که در آغاز فضا و زمان چنان آکنده از پیچ و تاب بود که دسترسی به قوانین مبین این رویداد میسر نیست . شاید مفهوم قانون فیزیکی خود در اینجا بی معنی شود .

برخی این نظرها را ناپخته و بدبینانه می دانند . هنوز خیلی زود است که دربارة توانایی آدمی به درک منشأ جهان نظر نهایی را اعلام کنیم . فیزیک معاصر امکاناتی را در برابر فهمیدن می گشاید که در گذشته به تصور هم نمی گنجد . برخی دیگر معتقدند که در آغاز فضا و زمان چنان آکنده از پیچ و تاب بود که دسترسی به قوانین مبین این رویداد میسر نیست . شاید مفهوم قانون فیزیکی خود در اینجا بی معنی شود .

ساختمان بزرگ مقیاس جهان

میان ما و کهکشانهایی که ساخت بزرگ مقیاس جهان را رقم می زنند میلیونها سال نوری فاصله است . حال دیگر امری بدیهی است که کهکشانها منظومه هایی ستاره ای در بیرون راه کهکشان هستند ؛ ولی اندکی بیش از پنجاه سال پیش مطلب پیش پا افتادة امروز ، موضوع بحث و جدل بود. در سال 1924 ادوین هابل[8] ، با استفاده از تلسکوپ 5/2 متری جدید مونت ویلسن در مطالعة ستارگان متغیر فیفاوسی کهکشان امراه المسلسله  و سایر کهکشانهای نزدیک ، به این مناقشه خاتمه بخشید . درخشندگی مطلق ( ذاتی ) یک قیفاوسی تابعی از دورة‌ تناوب آن است . از روی اندازه گیری دورة تناوب و شار انرژیی که از این ستاره بر زمین می تابد ، برآوردی از فاصلة آن بدست می آید . هابل این روش را بکار برد و نشان داد که فاصلة‌ ما از امراه المسلسه تقریباً ده برابر قطر کهکشان ما است .

او برای آنکه این نقشه را تا فواصلی بسط دهد که قیفاوسها قابل تشخیص نیستند ، به جستجوی اجرامی برآمد که پراکندگی اندکی در توزیع درخشندگی مطلق داشتند . پرنورترین ستارة ابرغول در یک کهکشان و پنجمین کهکشان از حیث روشنی در یک مجموعة‌ کهکشانی ، « شمعهای معیار» ی بودند که هابل بکار برد تا راه خود را تا فاصلة 800 مگاپارسک[9] ( در درجه بندی جدید ) بگشاید .ناحیه ای به این شعاع بر 7 10 * 2 کهکشان متوسط مشتمل می شود و وسعت آن تقریباً 15 درصد شعاع جهان قابل رؤیت است !

اگر کهکشانها توزیعی تصادفی می بود ، باید یک یا دو کهکشان در هر 100 مگاپارسک مکعب وجود می داشت .این توزیع را در آسمان برای کهکشانهایی که از 100 مگاپارسک به ما نزدیکترند نشان می دهد . ناحیة مرکزی مجموعة سنبله مثال برجسته ایست از غیرتصادفی بودن یا کلوخه مانند بودن توزیع کهکشانها در مقیاسهایی کمتر از چند مگا پارسک . بعضی از کهکشانها ، دوتایی های کم و بیش منفردی را تشکیل می دهند ؛ برخی دیگر در اجتماعات کوچکی ، چون گروه محلی که کهکشان ما و امراه المسلسله اعضای اصلی آنند ، جای دارند ؛ و بعضی دیگر اعای مجموعه هایی غنی ( وسیع و چگال ) هستند که ممکن است هزاران کهکشان داشته باشند

سلسله مراتب پیوسته ای از ساختواره ها ، از کهکشانها و گروهها گرفته تا مجموعه های کهکشانی و مجموعه های مجموعه های کهکشانی ، وجود دارد. شعاع ناحیة مرئی روشن یک کهکشان متوسط ، نظیر کهکشان ما ، بین 20 تا 30 کیلو پارسک است . ناحیة مرکزی یک مجموعة غنی کهکشانی ، معمولاً شعاعی در حدود نیم مگاپارسک دارد و مطالعات اخیر نشان داده است که نواحی بیرونی آن می تواند تا 10 الی 20 مگاپارسک ادامه یابد . پژوهشهای آماری اخیر همچنین مجموعه هایی از مجموعه های کهکشانی را آشکار ساخته است که بطور متوسط از دو یا سه مجموعة کهکشانی غنی تشکیل می شوند . در این دامنة وسیع اندازه ها ـ از 30 کیلو پارسک تا ده ها مگاپارسک ـ ظاهراً ارجحیتی برای مقیاس خاصی برای تجمع وجود ندارد همة مرزهای میان گروهها ، گروههای گروهها ، مجموعه ها و مجموعه های مجموعه ها صرفاً اختیاری و من عندی است . اگر به مقیاسهای باز هم بزرگتر روی آوریم و نواحیی از جهان را با هم بسنجیم که حجمی در حدود یک میلیون مگا پارسک مکعب یا بیشتر دارند ، شمارة کهکشانها در یک نمونه چندان تفاوتی با شمارة نمونة دیگر ندارد . چون نسبت به این مقیاسهای صد مگا پارسکی ، که هنوز نسبت به اندازه‌ جهان مرئی کوچکند ، متوسط بگیریم دیده می شود که توزیع کهکشانها به وجه قابل ملاحظه ای یکنواخت است . هر گاه بگوئیم که در این مقیاسهای بزرگ ، جهان همگن ـ یعنی از هر نقطه ای که نظر شود ، ظاهری یکسان دارد ـ و تکروند ـ یعنی در همة امتدادها یکسان می نماید ـ‌ است ، تقریب خوبی خواهد بود . تکوین و تحول ساختواره های بزرگ مقیاس ، از کهکشانها تا مجموعه های مجموعه های کهکشانی ، به کیهانشناسی مربوط می شود.

 نظریه انفجار بزرگ

نظریه انفجار بزرگ در حال حاضر تنها توضیح ارائه شده درباره منشأ جهان می‌باشد که بطور گسترده پذیرفته شده است. انفجار بزرگ ، بسیار پر انرژی و پر حرارات بود و در ثانیه‌های اولیه پس از انفجار فقط تشعشع و ذرات زیر اتمی گوناگون در جهان وجود داشتند. تشعشعات باقیمانده از این انفجار هنوز به صورت امواج ضعبف مایکروویو در آسمان وجود داشته ، از زمین قابل ردیابی هستند. به این امواج تشعشع مایکروویو زمینه کیهان گفته می‌شود.

در اواخر دهه 1920، ادوین هابل (1953-1889) ، ستاره شناس آمریکایی به بررسی نور دریافتی از ستارگان کهکشانهای دور دست پرداخت. او متوجه شد که طول موجهای این نور بلندتر از میزان مورد انتظار است. این پدیده که قرمز گرایی نام دارد، نشان داد که کهکشانها با سرعت زیادی در حال دور شدن از زمین هستند.

هر چه ما بیشتر به عمق کیهان نظاره می‌کنیم در واقع بیشتر به عمق زمان گذشته می‌نگریم. یک ستاره را که در فاصله 10 سال نوری قرار دارد به همان صورتی می‌بینیم که 10 سال نوری قبل بوده است. دورترین اجرامی را که انسان می‌تواند با تلسکوپهای بزرگ نجومی نظاره کند کوازارها ۱ (Quasar) هستند.

آنها در واقع کهکشانهای کاملا جوانی هستند که در مراحل اولیه شکل گیری به سر می‌برند. حال اگر انسان نگاهش را در سمت دلخواهی به دورتر و بازهم دورتر متوجه کند باید به مرزی برسد که در آنجا آغاز خلقت را مشاهده کند و به عبارت دیگر آن گاز داغ اولیه را ببیند که تمام کهکشانها ، ستارگان ، سیارات و موجودات از آن ایجاد شده‌اند. بنابراین می‌بایست پیرامون ما را پیوسته پوسته کاملا درخشانی در دور دست احاطه می‌کرد و آسمان هم می‌بایست شبها همچون روز روشن می‌شد اما این دیوار آتشین با سرعت زیادی از ما دور می‌شود زیرا که عالم لحظه به لحظه انبساط می‌یابد.
سرعت دورشدن به قدری زیاد است که نور این پوسته دارای طول موج بلندتری می‌شود که ما آن را فقط به صورت تشعشعات و امواج رادیویی۱ دریافت می‌کنیم. وجود این پرتوها را می‌توان با رادیو تلسکوپها به سادگی اثبات کرد این تشعشعات تکیه گاهی مهم برای اثبات فرضیه انفجار اولیه می‌باشد.

1 کیهانشناسان معمولاً سن جهان آغازین را بر حسب ثانیه نمی سنجند ، بلکه بر حسب دما بیان می کنند ؛ زیرا دما برای درک وقایعی که در جهان آغازین روی می دهد ، پارامتری است از نظر فیزیکی با معنی و مهم .

[9] ] یک پارسک pc برابر 26/3 سال نوری و برابر 18 10 * 86 / 3 سانتیمتر است . 1 مگا پارسک یک میلیون پارسک است . [

۱ مخفف عبارت نجومی Quasi-stellar object و عبارت است از عضوی از گروههای گوناگون ستاره مانند که دارای پرتوهای قرمز استثنایی می‌باشند و غالبا از خود فرکانسهای رادیویی و نیز امواج نوری قابل دیدن منتشر می‌کنند.

عالم در ابتدا چگونه به نظر می‌آمد؟

 آشکار است برای آگاهی از چگونگی اولین ثانیه‌ها و یا بهتر بگویم اولین اجزای ثانیه‌های پس از انفجار اولیه نباید از ستاره شناسان پرسید، بلکه در این مورد باید به فیزیکدانهای متخصص در امر فیزیک ذرات مراجعه کرد که در مورد تشعشعات و ماده در شرایط کاملا سخت و غیر عادی تحقیق و تجربه می‌کنند. تاریخ کیهان معمولا به 8 مقطع کاملا متفاوت و غیر مساوی تقسیم می‌شود:

 مرحله اول (صفر تا 10 -43 ثانیه)

این مسأله هنوز برای انسان ها کاملا روشن نیست که در این اولین اجزای ثانیه‌ها چه چیزی تبدیل به گلوله آتشینی شد که کیهان باید بعدا از آن ایجاد گردد. هیچ معادله و یا فرمولهای اندازه گیری برای درجه حرارت بسیار بالا و غیر قابل تصوری که در این زمان حاکم بود در دست نمی‌باشد.

مرحله دوم (10 -43 تا 10-32 ثانیه)

اولین سنگ بناهای ماده مثلا کوارکها و الکترونها و پاد ذره‌های آنها از برخورد پرتوها با یکدیگر بوجود می‌آیند. قسمتی از این سنگ بناها دوباره با یکدیگر برخورد می‌کنند و به صورت تشعشع فرو می‌پاشند. در لحظه‌های بسیار بسیار اولیه ذرات فوق سنگین   x نیز می‌توانسته‌اند بوجود آمده باشند. این ذرات دارای این ویژگی هستند که هنگام فروپاشی ماده بیشتری نسبت به ضد ماده و مثلا کوارکهای بیشتری نسبت به آنتی کوارکها ایجاد می‌کنند. ذرات x که فقط در همان اولین اجزای بسیار کوچک ثانیه‌ها وجود داشتند برای ما میراث مهمی به جا گذاردند که عبارت بود از: (افزونی ماده در برابر ضد ماده).

 مرحله سوم (از 10-32 ثانیه تا10 -6ثانیه)

کیهان از مخلوطی از کوارکها ، لپتونها - فوتونها و سایر ذرات دیگر تشکیل شده که متقابلا به ایجاد و انهدام یکدیگر مشغول بوده و ضمنا خیلی سریع در حال از دست دادن حرارت هستند.

 مرحله چهارم (از10 -6ثانیه تا10-3 ثانیه)

در این مرحله تقریبا تمام کوارکها و ضد کوارکها بصورت پرتو ذره‌ها به انرژی تبدیل می‌شوند. کوارکهای جدید دیگر نمی‌توانند در درجه حرارتهای رو به کاهش بوجود آیند ولی از آن جایی که کوارکهای بیشتری نسبت به ضد کوارکها وجود دارند. برخی از کوارکها برای خود جفتی پیدا نکرده و بصورت اضافه باقی می‌مانند. هر 3 کوارک با یکدیگر یک پروتون با یک نوترون می‌سازند. سنگ بناهای هسته اتمهای آینده اکنون ایجاد شده‌اند.

 مرحله پنجم ( 10-3 ثانیه تا 100 ثانیه)

الکترونها و ضد الکترونها در برخورد با یکدیگر به اشعه تبدیل می‌شوند. تعدادی الکترون باقی می‌ماند، زیرا که ماده بیشتری نسبت به ضد ماده وجود دارد. این الکترونها بعدا مدارهای اتمی را می‌سازند.

مرحله ششم (از 100 ثانیه تا 30 دقیقه)

در درجه حرارتهایی که امروزه می‌توان در مرکز ستارگان یافت اولین هسته‌های اتمهای سبک و بویژه هسته‌های بسیار پایدار هلیوم در اثر همجوشی هسته‌ای ساخته می‌شوند. هسته اتمهای سنگین از قبیل اتم آهن یا کربن در این مرحله هنوز ایجاد نمی‌شوند. در آغاز خلقت عملا فقط دو عنصر بنیادی که از همه سبکتر بودند وجود داشتند: هلیوم و هیدروژن.

مرحله هفتم (از 30 دقیقه تا یک میلیون سال پس از خلقت)

پس از گذشت حدود 300000 سال گوی آتشین آنقدر حرارت از دست داده که هسته اتمها و الکترونها می‌توانند در درجه حرارتی در حدود 3000 درجه سانتیگراد به یکدیگر بپیوندند و بدون اینکه دوباره فورا از هم بپاشند اتمها را تشکیل دهند. در نتیجه آن مخلوط ذره‌ای که قبلا نامرئی بود اکنون قابل دیدن می‌شود.

 مرحله هشتم (از یک میلیون سال پس از خلقت تا امروز)

از ابرهای هیدروژنی دستگاههای راه شیری ستارگان و سیارات[1] بوجود می‌آیند. در داخل ستارگان هسته اتمهای سنگین از قبیل اکسیژن و آهن تولید می‌شوند. که بعدها در انفجارات ستاره‌ای آزاد می‌گردند و برای ساخت ستارگان و سیارات و حیات جدید بکار می‌آیند.

دانلود فیزیک - سیر تحول ستارگان در حوزه علم فیزیک